1) Determine and/or Compute ϕ , λ , θ , x, y, k ... for all known points

2) Zenith Angle Correction:
$$ZA = Z\angle + a\sin\left(\frac{\left[\left(HT - HR\right) - \left(HI - HM\right)\right] \cdot \sin\left(Z\angle\right)}{SD}\right)$$

3) Curvature and Refraction:
$$Q = \frac{ZA + ZB - 180^{\circ}}{2} \qquad C + R = \frac{3600 \cdot Q}{SD \cdot \sin{(ZA)}}$$

(C+R) should be between 0.004" and 0.005" per foot and <u>must be estimated!</u>

Plane Zenith (both ends):
$$PZ = ZA - Q$$
 or $PZ = \frac{ZA - ZB + 180^{\circ}}{2}$

Plane Zenith (one end):
$$PZ = ZA - \frac{(C+R) \cdot SD \cdot \sin(ZA)}{3600}$$

4) Horizontal Distance (at mean elevation):
$$HD = SD \cdot \sin(PZ)$$

Vertical Difference:
$$VD = SD \cdot \cos(PZ)$$

Change in Elevation:
$$\Delta E = \frac{HM_A + HR_B}{2} + VD - \frac{HM_B + HR_A}{2}$$

5) Traverse and Determine Preliminary x, y, φ, k

6) Scale Factor (7 places):
$$\frac{k_1 + k_2}{2} \qquad \text{or} \qquad \frac{k_1 + 4 \cdot k_m + k_2}{6}$$

Must use correction to natural scale radius if latitudes differ by 4' or more.

Sea Level Factor (7 places):
$$\frac{R}{R+E}$$

$$R$$
 (mean radius of earth) = 20,906,000 feet

Grid Factor (7 places):
$$GF = \frac{k \cdot R}{R + E}$$
 (Note: $GF = SF \cdot SLF$)

Grid Distance:
$$GD = HD \cdot GF$$

7) Second Term (2 places):
$$\theta' = A \cdot (x_2 - x_1) \cdot \left(y_1 - y_0 + \frac{y_2 - y_1}{3} \right) \quad \underline{\text{seconds!}}$$

$$A = 2.36 \cdot 10^{-10}$$
 for all NAD27 zones in the United States (Note: $Grid AZI = Geod AZI - \theta + \theta'$)

Grid Angle:
$$\beta = \alpha - \theta'_{BS} + \theta'_{FS}$$

$$\alpha$$
 (geodetic angle) β (grid angle)

8) Balance Angles, Traverse and Compass Rule Adjust